
Part II

Binary Searching in Trees

DBD
PUC-Rio - Certificação Digital Nº 0611918/CA



6
Introduction

Searching in ordered structures is a fundamental problem in theoretical

computer science. In one of its most basic variants, the objective is to find

a special element of a totally ordered set by making queries which iteratively

narrow the possible locations of the desired element. This can be generalized to

searching in more general structures which have only a partial order for their

elements instead of a total order [CDK+04, LA95, BFN99b, OP06, MOW08].

In this work, we focus on searching in structures that lay between totally

ordered sets and the most general posets: we wish to efficiently locate a

particular node in a tree. More formally, as input we are given a tree T = (V,E)

which has a ‘hidden’ marked node and a function w : V → R that gives the

likelihood of a node being the one marked. For example, T could be modeling

a network with one defective unit. In order to discover which node of T is

marked, we can perform edge queries : after querying the arc (i, j) of T (j

being a child of i)1, we receive an answer stating that either the marked node

is a descendant of j (called a yes answer) or that the marked node is not a

descendant of j (called a no answer).

A search strategy is a procedure that decides the next query to be posed

based on the outcome of previous queries. As an example, consider the strategy

for searching the tree T of Figure 6.1.a represented by the decision tree D of

Figure 6.1.b. A decision tree can be interpreted as a strategy in the following

way: at each step we query the arc indicated by the node of D that we are

currently located. In case of a yes answer, we move to the right child of the

current node and we move to its left child otherwise. We proceed with these

operations until the marked node is found. Let us assume that 4 is the marked

node in Figure 6.1.a. We start at the root of D and query the arc (3, 4) of T ,

asking if the marked node is a descendant of node 4 in T . Since the answer is

yes, we move to the right child of (3, 4) in D and we query the arc (4, 6) in T .

In this case, the outcome of the query (4, 6) is no and then we move to node

(4, 5) of D. By querying this node we conclude that the marked node of T is

1Henceforth, when we refer to the arc (i, j), j is a child of i.

DBD
PUC-Rio - Certificação Digital Nº 0611918/CA



Chapter 6. Introduction 49

in indeed 4.

1

2 3

4

5 6

(a)
(3, 4)

(1, 2)

(1, 3)

(4, 6)

(4, 5)

1 3 4 5

2 6

(b)

yesno

yes

yes

yes

yes

no

no

no

no

Figure 6.1: (a) Tree T . (b) Example of a decision tree for T ; Internal nodes
correspond to arcs of T and leaves to nodes of T

We define the average number of queries of a strategy S as
∑

v∈T svw(v),

where sv is the number of queries needed to find the marked node when v is

the marked node. Therefore, our optimization problem is to find the strategy

with minimum expected number of queries. We make a more formal definition

of a strategy by means of decision trees in the next section.

Besides generalizing a fundamental problem in theoretical computer sci-

ence, searching in posets (and in particular in trees) also has practical appli-

cations such as in file system synchronization and software testing [MOW08].

We remark that although these applications were considered in the ‘worst case’

version of this problem, taking into account the likelihood that the elements

are marked (for instance via code complexity measures in the latter example)

may lead to improved searches.

Statement of the results. Our main result is a linear time algorithm that

provides the first constant factor approximation for the problem of binary

searching in trees. The algorithm is based on the decomposition of the input

tree into special paths. A search strategy is computed for each of these paths

and then combined to form a strategy for searching the original tree. This

decomposition is motivated by the fact that the problem of binary searching

in paths is easily reduced to the well-solved problem of searching in ordered

lists with access probabilities.

As mentioned previously, the complexity of this ‘average case’ version of

the problem of binary searching in trees remains open, which contrasts with its

‘worst case’ version that is polynomially solvable [BFN99b, OP06, MOW08].

Related work. Searching in totally ordered sets is a very well studied

problem [Knuth98]. In addition, many variants have also been considered, such

as when there is information about the likelihood of each element being the one

marked [PS93], or where each query has a different fixed cost and the objective

is to find a strategy with least total cost [Knight88, LMP99, LMP01]. As a

DBD
PUC-Rio - Certificação Digital Nº 0611918/CA



Chapter 6. Introduction 50

generalization of the latter, [NBB+00, SNB+03] considered the variant when

the cost of each query depends on the queries posed previously.

The most general version of our problem when the input is a poset

instead of a tree was first considered by Lipman and Abrahams [LA95].

Apart from introducing the problem, they present an optimized exponential

time algorithm for solving it. In [KPB99], Kosaraju et. al. present a greedy

O(log n)-approximation algorithm. In fact, their algorithm handles more gen-

eral searches, see [LN04, CPR+07] for other more general results. To the best

of our knowledge, this O(log n)-approximation algorithm is the only available

result, with theoretical approximation guarantee, for the average case version

of searching in trees. Therefore, our constant approximation represents a sig-

nificant advance for this problem.

The variant of our problem where the goal is to minimize the number

of queries in the worst case for searching in trees, instead of minimizing the

average case, was first considered by Ben-Asher et. al. [BFN99b]. They have

shown that it can be solved in O(n4 log3 n) via dynamic programming. Recent

advances [OP06, MOW08] have reduced the time complexity to O(n3) and

then O(n). In contrast, the more general version where the input is a poset

instead of a tree is NP-hard [CDK+04].

DBD
PUC-Rio - Certificação Digital Nº 0611918/CA




